翻訳と辞書
Words near each other
・ Generation (particle physics)
・ Generation 1000 Euros
・ Generation 13
・ Generation A
・ Generation Adidas
・ Generation Adidas Cup
・ Generation Bass
・ Generation Catalano
・ Generation Cross
・ Generation Cryo
・ Generation Dead
・ Generation effect
・ Generation EFX
・ Generalized game theory
・ Generalized gamma distribution
Generalized Gauss–Bonnet theorem
・ Generalized Gauss–Newton method
・ Generalized geography
・ Generalized granuloma annulare
・ Generalized Hebbian Algorithm
・ Generalized helicoid
・ Generalized Helmholtz theorem
・ Generalized hypergeometric function
・ Generalized hyperhidrosis
・ Generalized integer gamma distribution
・ Generalized inverse
・ Generalized inverse Gaussian distribution
・ Generalized inversive congruential pseudorandom numbers
・ Generalized iterative scaling
・ Generalized Jacobian


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized Gauss–Bonnet theorem : ウィキペディア英語版
Generalized Gauss–Bonnet theorem
In mathematics, the generalized Gauss–Bonnet theorem (''also called ChernGaussBonnet theorem'') presents the Euler characteristic of a closed even-dimensional Riemannian manifold as an integral of a certain polynomial derived from its curvature. It is a direct generalization of the Gauss–Bonnet theorem (named after Carl Friedrich Gauss and Pierre Ossian Bonnet) to higher dimensions.
Let ''M'' be a compact orientable 2''n''-dimensional Riemannian manifold without boundary, and let \Omega be the curvature form of the Levi-Civita connection. This means that \Omega is an \mathfrak s\mathfrak o(2n)-valued 2-form on ''M''. So \Omega can be regarded as a skew-symmetric 2''n'' × 2''n'' matrix whose entries are 2-forms, so it is a matrix over the commutative ring \wedge^(\Omega), which turns out to be a 2''n''-form.
The generalized Gauss–Bonnet theorem states that
:\int_M \mbox(\Omega)=(2\pi)^n\chi(M)\
where \chi(M) denotes the Euler characteristic of ''M''.
==Example: dimension 4==
In dimension n=4, for a compact oriented manifold, we get
:\chi(M)=\frac\int_M\left(|Rm|^2-4|Rc|^2+R^2\right)d\mu
where Rm is the full Riemann curvature tensor, Rc is the Ricci curvature tensor, and R is the scalar curvature.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized Gauss–Bonnet theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.